
Spatial Cypher Cheat Sheet - Intro To Geospatial Cypher Functions With Neo4j

Data Import
We can use Cypher to import data into Neo4j from formats such as CSV and JSON, including GeoJSON.

CSV

GeoJSON

Using the LOAD CSV Cypher command to create an airport routing graph.

1 - Create a constraint on the field that identies
uniquesness, in this case Airport IATA code. This
ensures we won’t create duplicate airports but
also creates a database index to improve
performance of our data import steps below.

2 - Create Airport nodes, storing their location,
name, IATA code, etc as node properties.

3 - Create FLIGHT_TO relationships connecting
airports with a connecting flight. Increment the
num_flights counter variable to keep track of the
number of flights between airports per year.

CREATE CONSTRAINT FOR (a:Airport) REQUIRE a.iata IS UNIQUE;

LOAD CSV WITH HEADERS
FROM "https://cdn.neo4jlabs.com/data/flights/airports.csv"
AS row
MERGE (a:Airport {iata: row.IATA_CODE})
ON CREATE SET a.city = row.CITY,
 a.name = row.AIRPORT,
 a.state = row.STATE,
 a.country = row.country,
 a.location =
 point({ latitude: toFloat(row.LATITUDE),
 longitude: toFloat(row.LONGITUDE)
 });

LOAD CSV WITH HEADERS
FROM "https://cdn.neo4jlabs.com/data/flights/flights.csv" AS row
CALL {
 WITH row
 MATCH (origin:Airport {iata: row.ORIGIN_AIRPORT})
 MATCH (dest:Airport {iata: row.DESTINATION_AIRPORT})
 MERGE (origin)-[f:FLIGHT_TO]->(dest)
 ON CREATE SET
 f.num_flights = 0, f.distance = toInteger(row.DISTANCE)
 ON MATCH SET
 f.num_flights = f.num_flights + 1
} IN TRANSACTIONS OF 100000 ROWS;

We can also store arrays of Points to represent complex geometries like lines and polygons, for example to represent land parcels.

CALL apoc.load.json('https://cdn.neo4jlabs.com/data/landgraph/parcels.geojson')
YIELD value
UNWIND value.features AS feature
CREATE (p:Parcel) SET
 p.coordinates = [coord IN feature.geometry.coordinates[0] | point({latitude: coord[1], longitude: coord[0]})]
 p += feature.properties;

Routing With Path Finding Algorithms

Shortest Path

Dijkstra’s Algorithm

Shortest Weighted Path

A* Algorithm

MATCH p = shortestPath(
 (:Airport {iata: "SFO"})-[:FLIGHT_TO*..10]->(:Airport {iata: "RSW"})
) RETURN p

MATCH (origin:Airport {iata: "SFO"})
MATCH (dest:Airport {iata: "RSW"})
CALL
 apoc.algo.dijkstra(
 origin,
 dest,
 "FLIGHT_TO",
 "distance"
)
YIELD path, weight
UNWIND nodes(path) AS n
RETURN {
 airport: n.iata,
 lat: n.location.latitude,
 lng: n.location.longitude
} AS route

MATCH (origin:Airport {iata: "SFO"})
MATCH (dest:Airport {iata: "RSW"})
CALL
 apoc.algo.aStarConfig(
 origin,
 dest,
 "FLIGHT_TO",
 {
 pointPropName: "location",
 weight: "distance"
 }
)
YIELD weight, path
RETURN weight, path

The shortestPath function performs a binary
breadth-first search to find the shortest
path between nodes in the graph.

Often we want to consider the shortest
weighted path taking into account distance,
time or some other cost stored as relationship
properties. Dijkstra and A* are two algorithms
that take relationship (or edge) weights into
account when calculating the shortest path.

The A* algorithm adds a heuristic
function to choose which paths to
explore. In our case the heuristic is the
distance to the final destination.

Dijkstra’s algorithm is similar to a breadth-first search,
but takes into account relationship properties (distance)
and prioritizes exploring low-cost routes first using a
priority queue.

Spatial Cypher Functions

Radius Distance

Within Bounding Box

Geocoding

MATCH (a:Airport)
WHERE point.distance(
 a.location,
 point({latitude:37.55948, longitude:-122.32544})) < 20000
RETURN a

MATCH (a:Airport)
WHERE point.withinBBox(
 a.location,
 point({longitude:-122.325447, latitude: 37.55948 }),
 point({longitude:-122.314675 , latitude: 37.563596}))
RETURN a

CALL apoc.spatial.geocode('SFO Airport') YIELD location

{
 "description": "San Francisco International Airport, 780,
South Airport Boulevard, South San Francisco, San Mateo County,
CAL Fire Northern Region, California, 94128, United States",
 "longitude": -122.38398938548363,
 "latitude": 37.622451999999996,
}

To find nodes close to other nodes in the
graph we can use the point.distance()
function to perform a radius distance search

To search for nodes within a bounding box we
can use the point.withinBBox() function.

To geocode a location description into latitude,
longitude location we can use the
apoc.spatial.geocode() procedure. By
default this procedure uses the Nominatim
geocoding API but can be configured to use
other geocoding services, such as Google
Cloud.

Spatial Point Type
Neo4j supports 2D or 3D geographic (WGS84) or cartesian coordinate reference system (CRS) points

RETURN point({latitude:37.62245, longitude:-122.383989})

CREATE (a:Airport)
SET a.iata = "SFO",
a.location = point({latitude:37.62245, longitude:-122.383989})
RETURN a

CREATE POINT INDEX airportIndex
FOR (a:Airport) ON (a.location)

Creating a point by specifying latitude/longi-
tude. WGS84 is assumed when using lat/lon.

Point data can be stored as properties on
nodes or relationships. Here we create an
Airport node and set its location as a point.

Database indexes are used to speed up search performance. Here we create a database
index on the location property for Airport nodes. This will help us find airports faster
when searching for airports by location (radius distance or bounding box spatial search).

MATCH p=(sfo:Airport {iata: "SFO"})-[b:FLIGHT_TO*2]->(rsw:Airport {iata: "RSW"}) RETURN *

Intro To Cypher & The Property Graph Data Model

Neo4j is a database management system (DBMS) that uses the property graph data
model which is composed of nodes, relationships, and properties to model, store, and
query data as a graph. Nodes can have one or more labels, relationships have a single
type and direction. Key-value pair properties can be stored on nodes and relationships.

The Cypher query language is used to query data and interact with Neo4j. Cypher is a
declarative query language that uses ASCII-art like syntax to define graph patterns that
form the basis of most query operations. Nodes are defined with parenthesis,
relationships with square brackets, and can be combined to create complex graph
patterns. Common Cypher commands are MATCH (find where the graph pattern exists),
CREATE (add data to the database using the specified graph pattern), and RETURN
(return a subset of the data as a result of a traversal through the graph.

Search the graph for
the following pattern.

This graph pattern represents a node with the label Airport that has a property iata with the
value “SFO”, connected through one or more outgoing relationships of type FLIGHT_TO to a
node with the label Airport and iata value “RSW” . We bind variables sfo, f, and rsw to refer to
each part of the graph pattern later in the query if needed.

Return any
variables that
we’ve matched on
in previous parts
of the query

FLIGHT_TO

dista
nce: 967

num_flig
hts:

5065

FLIG
HT_TO

distance: 1607

num
_flights: 385

Airport

iata: "SFO"
city: "San Francisco"

location: POINT (lat:-122.374, lng:y:37.619)
name: "San Francisco International Airport
state: "CA"

Airport

iata: "DEN"
city: "Denver"

location: POINT (lat: -104.667, lng:39.858)
name: "Denver International Airport"
state: "CO"

Airport

iata: "RSW"
city: "Ft. Myers"

location: POINT (lat: -81.755, lng: 26.536))
name: "Southwest Florida International Airport"
state: "FL"

Nodes are defined within parentheses ()
properties within curly braces {}

The variable length path operator * defines paths of arbitrary length.
We specify a maximum length of 2 relationships.

The variable p is bound
to the path connecting
SFO and RSW

Spatial Cypher Cheat Sheet - Using Neo4j With Python

Working With OpenStreetMap Data

Loading A Road Network WIth OSMNx
pip install osmnx

import osmnx as ox

G = ox.graph_from_place("Boston, MA, USA", network_type="drive")
fig, ax = ox.plot_graph(G)

gdf_nodes, gdf_relationships = ox.graph_to_gdfs(G)
gdf_nodes.reset_index(inplace=True)
gdf_relationships.reset_index(inplace=True)

gdf_nodes

gdf_relationships

node_query = '''
 UNWIND $rows AS row
 WITH row WHERE row.osmid IS NOT NULL
 MERGE (i:Intersection {osmid: row.osmid})
 SET i.location =
 point({latitude: row.y, longitude: row.x }),
 i.ref = row.ref,
 i.highway = row.highway,
 i.street_count = toInteger(row.street_count)
 RETURN COUNT(*) as total
 '''

rels_query = '''
 UNWIND $rows AS road
 MATCH (u:Intersection {osmid: road.u})
 MATCH (v:Intersection {osmid: road.v})
 MERGE (u)-[r:ROAD_SEGMENT {osmid: road.osmid}]->(v)
 SET r.oneway = road.oneway,
 r.lanes = road.lanes,
 r.ref = road.ref,
 r.name = road.name,
 r.highway = road.highway,
 r.max_speed = road.maxspeed,
 r.length = toFloat(road.length)
 RETURN COUNT(*) AS total
 '''

def insert_data(tx, query, rows, batch_size=1000):
 total = 0
 batch = 0

 while batch * batch_size < len(rows):
 results = tx.run(query, parameters = {
 'rows':
 rows[batch * batch_size: (batch + 1) * batch_size]
 .to_dict('records')
 }).data()
 print(results)
 total += results[0]['total']
 batch += 1

with driver.session() as session:
 session.execute_write(insert_data, node_query, gdf_nodes.drop(columns=['geometry']))
 session.execute_write(insert_data, rels_query, gdf_relationships.drop(columns=['geometry']))

Here is our nodes GeoDataFrame. Each
row represents an intersection in the

Boston road network.

Here is our relationships
GeoDataFrame. Each row

represents a road segment
connecting two intersec-

tions.

In this section we will import data from
OpenStreetMap into Neo4j using the
OSMNx Python package. Below is the
property graph data model we will use
to model the road network of Boston.

Visualizing the Boston road network using Neo4j Bloom,
styled using betweenness centrality and Louvain for

neighborhood detection

Define a Cypher query to add intersection
nodes from the nodes GeoDataFrame

Adding road segments from the relationships
GeoDataFrame connecting intersection nodes

Because our GeoDataFrames
can be very large we break

them up into batches to
avoid sending too much data

to the database at once.

The Neo4j Python Driver
Creating A GeoDataFrame From Data Stored In Neo4j

import neo4j

NEO4J_URI = "neo4j://localhost:7689"
NEO4J_USER = "neo4j"
NEO4J_PASSWORD = "letmeinnow"
NEO4J_DATABASE = "neo4j"

driver = neo4j.GraphDatabase.driver(
 NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD)
)

AIRPORT_QUERY = """
 MATCH (origin:Airport)-[f:FLIGHT_TO]->(dest:Airport)
 CALL {
 WITH origin
 MATCH (origin)-[f:FLIGHT_TO]-()
 RETURN sum(f.num_flights) AS origin_centrality
 }
 CALL {
 WITH dest
 MATCH (dest)-[f:FLIGHT_TO]-()
 RETURN sum(f.num_flights) AS dest_centrality
 }
 RETURN {
 origin_wkt:
 "POINT (" + origin.location.longitude + " " + origin.location.latitude + ")",
 origin_iata: origin.iata,
 origin_city: origin.city,
 origin_centrality: origin_centrality,
 dest_centrality: dest_centrality,
 dest_wkt:
 "POINT (" + dest.location.longitude + " " + dest.location.latitude + ")",
 dest_iata: dest.iata,
 dest_city: dest.city,
 distance: f.distance,
 num_flights: f.num_flights,
 geometry:
 "LINESTRING (" + origin.location.longitude + " " + origin.location.latitude + ","
 + dest.location.longitude + " " + dest.location.latitude + ")"
 }

def get_airport(tx):
 results = tx.run(AIRPORT_QUERY)
 df = results.to_df(expand=True)
 df.columns =
 ['origin_city','origin_wkt', 'dest_city', 'dest_wkt', 'origin_centrality', 'distance', 'origin_iata',
 'geometry','num_flights', 'dest_centrality', 'dest_iata']
 df['geometry'] = geopandas.GeoSeries.from_wkt(df['geometry'])
 df['origin_wkt'] = geopandas.GeoSeries.from_wkt(df['origin_wkt'])
 df['dest_wkt'] = geopandas.GeoSeries.from_wkt(df['dest_wkt'])
 gdf = geopandas.GeoDataFrame(df, geometry='geometry')
 return gdf

with driver.session(database=NEO4J_DATABASE) as session:
 airport_df = session.execute_read(get_airport)

world = geopandas.read_file(
 geopandas.datasets.get_path('naturalearth_lowres')
)

ax = world[world.continent == 'North America']
 .plot(color='white', edgecolor='black')

flights_gdf = flights_gdf.set_geometry("origin_wkt")
flights_gdf.plot(ax=ax, markersize='origin_centrality')

flights_gdf = flights_gdf.set_geometry("geometry")
flights_gdf.plot(ax=ax, markersize=0.1, linewidth=0.01)

In this section we’ll use the Neo4j
Python Driver to create a GeoData-
Frame of our flight data. We’ll also
compute weighted degree centrality so
we can plot airport size relative to their
“importance” in the US airline network.
The Neo4j Python Driver can be
installed with:

pip install neo4j

Connection credentials for
our Neo4j database

Create a connection to
the database

Define a Cypher query to fetch data from Neo4j

We return the geometry
of our origin and

destination airports, and
the flight route as Well

Known Text (WKT). POINT
for the airports and

LINESTRING for the flight
route. We’ll parse this

WKT when defining the
geometry in our
GeoDataFrame.

The Neo4j Python Driver has a .to_df() function which
will convert a Neo4j result set to a pandas

DataFrame

Here we parse the WKT columns into GeoSeries and
convert our pandas DataFrame into a GeoPandas

GeoDataFrame

We now have a GeoDataFrame
where each row is a flight route

between two airports. We can plot
the airport and routes, using the
centrality metric to size airport
nodes: more important airports

should be larger.

Weighted degree
centrality is a measure of
a node’s importance in
the network and is the
sum of all relationship
weights connected to a

given node.

